TKI sensitivity patterns of novel kinase-domain mutations suggest therapeutic opportunities for patients with resistant ALK+ tumors
نویسندگان
چکیده
The anaplastic lymphoma kinase (ALK) protein drives tumorigenesis in subsets of several tumors through chromosomal rearrangements that express and activate its C-terminal kinase domain. In addition, germline predisposition alleles and acquired mutations are found in the full-length protein in the pediatric tumor neuroblastoma. ALK-specific tyrosine kinase inhibitors (TKIs) have become important new drugs for ALK-driven lung cancer, but acquired resistance via multiple mechanisms including kinase-domain mutations eventually develops, limiting median progression-free survival to less than a year. Here we assess the impact of several kinase-domain mutations that arose during TKI resistance selections of ALK+ anaplastic large-cell lymphoma (ALCL) cell lines. These include novel variants with respect to ALK-fusion cancers, R1192P and T1151M, and with respect to ALCL, F1174L and I1171S. We assess the effects of these mutations on the activity of six clinical inhibitors in independent systems engineered to depend on either the ALCL fusion kinase NPM-ALK or the lung-cancer fusion kinase EML4-ALK. Our results inform treatment strategies with a likelihood of bypassing mutations when detected in resistant patient samples and highlight differences between the effects of particular mutations on the two ALK fusions.
منابع مشابه
Non-small Cell Lung Cancer with Concomitant EGFR, KRAS, and ALK Mutation: Clinicopathologic Features of 12 Cases
BACKGROUND Although epidermal growth factor receptor (EGFR), v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK) mutations in non-small cell lung cancer (NSCLC) were thought to be mutually exclusive, some tumors harbor concomitant mutations. Discovering a driver mutation on the basis of morphologic features and therapeutic responses with mutation analysis c...
متن کاملTwo novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib.
PURPOSE The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with ALK-rearranged non-small cell lung cancer (NSCLC). Several next-generation ALK-TKIs have entered the clinic and have shown promising activity in crizotinib-resistant patients. As patients still relapse even on these next-generation ALK-TKIs, we examined mechanisms of resistance to...
متن کاملA novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors.
Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKI), including crizotinib, are effective treatments in preclinical models and in cancer patients with ALK-translocated cancers. However, their efficacy will ultimately be limited by the development of acquired drug resistance. Here we report two mechanisms of ALK TKI resistance identified from a crizotinib-treated non-small cell lung...
متن کاملTreatment Efficacy and Resistance Mechanisms Using the Second-Generation ALK Inhibitor AP26113 in Human NPM-ALK-Positive Anaplastic Large Cell Lymphoma.
UNLABELLED ALK is a tyrosine kinase receptor involved in a broad range of solid and hematologic tumors. Among 70% to 80% of ALK(+) anaplastic large cell lymphomas (ALCL) are caused by the aberrant oncogenic fusion protein NPM-ALK. Crizotinib was the first clinically relevant ALK inhibitor, now approved for the treatment of late-stage and metastatic cases of lung cancer. However, patients freque...
متن کاملTumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit...
متن کامل